
Portable Techniques to Find Effective Memory
Hierarchy Parameters

Keith Cooper
Rice University
Houston, Texas

Jeffrey Sandoval
Cray, Incorporated
St. Paul, Minnesota

Abstract—Application performance on modern microproces-
sors depends heavily on performance related characteristics of
the underlying architecture. To achieve the best performance, an
application must be tuned to both the target-processor family
and, in many cases, to the specific model, as memory-hierarchy
parameters vary in important ways between models. Manual
tuning is too inefficient to be practical; we need compilers that
perform model-specific tuning automatically.

To make such tuning practical, we need techniques that
can automatically discern the critical performance parameters
of a new computer system. While some of these parameters
can be found in manuals, many of them cannot. To further
complicate matters, compiler-based optimization should target
the system’s behavior rather than its hardware limits. Effective
cache capacities, in particular, can be smaller than the hardware
limits for a number of reasons, such as sharing between coresor
between instruction and data caches. Physical address mapping
can also reduce the effective cache capacity.

To address these challenges, we have developed a suite of
portable tools that derive many of the effective parametersof
the memory hierarchy. Our work builds on a long line of prior
art that uses micro-benchmarks to analyze the memory system.
We separate the design of a reference string that elicits a specific
behavior from the analysis that interprets that behavior. We
present a novel set of reference strings and a new robust approach
to analyzing the results. We present experimental validation on
a collection of 20 processors.

I. I NTRODUCTION

Application performance on today’s multi-core processors
is often limited by the performance of the system’s memory
hierarchy. To achieve good performance, the code must be
carefully tailored to the detailed memory structure of the target
processor. That structure varies widely across different archi-
tectures, even for models of the sameISA. Thus, performance
is often limited by the compiler’s ability to understand model-
specific differences in the memory hierarchy and to tailor the
program’s behavior accordingly.

This paper presents a set of techniques to discover, em-
pirically, the capacities and other parameters of the various
levels in the data memory hierarchy, both cache andTLB.
Our toolset computeseffective values for the various memory-
hierarchy parameters that it measures, rather than finding the
full hardware capacity. We defineeffective capacity to mean
the amount of memory at each level that an application can use
before the access latency begins to rise. The effective value for

This work was funded by the Defense Advanced Projects Research Agency
(DARPA) through Air Force Research Laboratory Contract FA8650-09-C-
7915. The opinions and findings in this document do not necessarily reflect
the views of either the United States Government or Rice University.

a parameter can be considered an upper bound on the usable
fraction of the physical resource.

In the best case, effective capacity is equal to physical
capacity. For example, on most microprocessors, the effective
L1 data cache capacity is identical to the physical capacity,
because theL1 data cache is not shared with other cores, it
is separate from theL1 instruction cache, and it is virtually
mapped. In contrast, anL2 cache for the same architecture
might be shared among cores. It might contain the images
of all those cores’L1 instruction caches. It might hold page
tables, loaded intoL2 by hardware that walks the page table.
Each of these effects might reduce the effectiveL2 cache
capacity; modern commodity processors exhibit all three.

A compiler that blocks loops to improve memory access
times should achieve better results using these effective cache
sizes than it would using the physical hardware limits because
the effective number captures the point on the curve of access
cost versus capacity where access costs begin to rise. The
compiler’s goal should be to tile the computation into that
fraction of cache that does not cause access time to rise.
Several authors have advocated the use of effective capacities
rather than physical capacities [1]–[3].

This paper describes techniques that measure effective ca-
pacities for a single-threaded application, running on a qui-
escent system—that is, no other tasks are making significant
demands on the memory system. While this scenario is the best
case for effective capacities, it presents significant challenges.
To obtain clean data, the techniques must carefully isolate
specific behaviors, separating, for example cache misses from
TLB misses. They must also reduce the impact of transient
behavior, such as interference from autonomous processes
such as operating system daemons. To produce consistent
results, the data requires interpretation. That analysis must
be automatic and robust if the tools are to be portable. The
tools have been tested on across a broad collection of systems;
Section VI shows results from twenty systems.

This paper does not address the problem of finding the
effective parameters seen by a single thread in a multithreaded
computation, whether on one core or many cores. Rather,
these techniques lay the groundwork for a careful investigation
of that phenomenon: carefully validated techniques for mea-
surement and analysis of the simpler single-thread behavior.
Neither does the paper address the problem of measuring
instruction cache capacity, unless that level of cache is shared
between the instruction and data cache hierarchies.

This paper builds on a long line of prior work, described in
Section II. It extends that work in several important ways. Our
focus is on robust micro-benchmarks and automated analysis
to interpret the results. The microbenchmarks, described in
Section IV, use carefully designed reference strings to isolate
and measure specific memory hierarchy behaviors. They adopt
a disciplined approach to time measurement that provides
clean, reproducible data. The automated analysis, described in
Section V, incorporates a sophisticated multi-step technique to
filter, smooth, and interpret the data. It produces a consistent
interpretation of the micro-benchmark results across many
systems. Finally, Section VI describes our experience using
the tools to characterize more than twenty distinct processors
and processor models.

II. W HY NOT USE EXISTING TOOLS?

This problem is not new. Prior work has described several
systems that attempt to characterize the memory hierarchy [4]–
[9]. Our goal has been to build a set of tools that derive the
effective memory-system parameters in an automated way.
From our perspective, previous systems suffer from several
specific flaws.

1) We found no single set of tools that measured the full
set of cache andTLB parameters that a compiler needs.
With some of the systems, the papers lay out techniques
for measuring higher levels of cache orTLB that the
distributed software does not implement. Several of the
systems rely on a human to interpret the results.

2) The prior tools are not easily portable to current ma-
chines. Some rely on system-specific features such as
superpages or hardware performance counters to sim-
plify the problems. Others were tested on older systems
with shallow hierarchies; they and produce odd and
inaccurate results on modern processors. Our tools limit
themselves to portableC code withPOSIX calls.

3) Sharing in the memory hierarchy complicates the prob-
lems of both measurement and analysis enough so that
the tools need to model it and account for it explicitly.
The techniques in this paper address one part of that
problem—understanding behavior.1

4) Our own experience has shown us that robust analysis of
the data is difficult. For example, several prior systems
rely on threshold values to detect transitions in the
data—for example, an increase in access time of>20%
indicates a new level in the hierarchy. As systems evolve
and models proliferate, such threshold-based techniques
invariably fail.

5) Finally, previous tools try to solve for multiple param-
eters at once. When the code works, this approach is
fine. However, if the code finds a wrong answer for
one parameter, it inevitably is wrong for the others. For

1We have also developed tools that derive a graph of sharing relationships
between cores and between the instruction cache and data cache hierarchies.
Space limitations prevent us from describing those tools inthis paper.

example, colleagues showed us an example where X-
RAY [9] computed anL1 associativity of 9 rather than
8, with the result that it reported anL1 capacity that was
9
8 of the physical value [10].

One or more of these issues arose with each prior system
that we tested. These shortcomings motivated our current set
of tools. We have built a set of tools that measure a broad
variety of cache andTLB parameters, that are portable across
a variety of systems, that provide accurate results for shared
levels in the memory hierarchy, that include a robust automatic
analysis without arbitrary threshold values, and that solve for
each parameter independently to avoid compounding errors.

III. L ITERATURE REVIEW

All memory characterization work appears to derive from
Saavedra and Smith [8]. They use a Fortran benchmark to
observe memory behavior. It measures the time needed to
stride through an array of lengthN with a stride ofs. They
generate plots with varied values ofN and s and manually
interpret the results to determine the cache andTLB capac-
ity, linesize (pagesize), and associativity. They use a single
benchmark to determine all characteristics, which requires
careful disambiguation between various effects. In contrast,
our work uses distinct access patterns for each effect and relies
on a robust automated analysis that interprets results for both
physically and virtually mapped caches.

In lmbench, McVoy and Staelin replaced array access with
a linked list traversal to allow indirect and randomized access
patterns [7]. This advance was necessitated by improvements
in hardware prefetching. Our tools leverage this approach.

In X-RAY , Yotov et al. addressed both algorithmic and
implementation issues in prior work [9], [11]. X-RAY uses a
single test to detect cache capacity and associativity, probing
the cache to determine itsshape. While that works reasonably
well on an unshared cache, such as anL1 data cache, features
such as sharing or a victim cache can create unexpected results.
X-RAY also requires superpages to characterize physically
mapped levels in the cache—a serious problem for portability.
In contrast, our tools measure each parameter separately; the
same tools handle physically and virtually mapped caches.

Both Servet [6] and P-RAY [5] extend prior work to
characterize sharing and communication aspects of multi-
core clusters. These approaches do not address the issues
that we tackle in this paper. Our work on improving cache
characterization methodology from the perspective of a single
thread is orthogonal to the work on characterizing shared
resources. This paper provides a principled foundation for
automatic resource characterization, which is necessary for
future extensions to multi-core architectures.

IV. PORTABLE M ICRO-BENCHMARKS

This section describes the micro-benchmarks that we de-
veloped to measure specific behaviors. The micro-benchmarks
include a general test for effective cache capacity at all levels,
a similar test for effectiveTLB capacity at all levels,and a test

baseline← time for the G(2,LB,0) reference string

for n← 2 to MaxAssociativity
for k← LB to UB

t← time for the G(n,k,0) reference string

if (t > baseline)
L1Assoc← n - 1
L1Size← L1Assoc× k
break out of both loops

for offset← 1 to pagesize
t← time for the G(n,k,offset) reference string

if t = baseline
L1LineSize = offset - 1
break out of loop

Fig. 1. Pseudocode for the Gap Test

for cache linesize at all levels. We rely on the operating-system
pagesize reported by thePOSIX sysconf interface.

BecauseL1 data cache linesize is useful to reduce spatial
locality in the general tests, our tools use a specialized test to
find L1 cache parameters. The parameters are later confirmed
by the more general tests. This specialized test, thegap test, is
based on ideas found in X-RAY [9] running in an infrastructure
that we developed to obtaining accurate measurements. It
measures capacity, associativity, and linesize. Either sharing
or physical address mapping can defeat thegap test, which
makes it unsuitable for caches beyond theL1 cache.

All of the tests rely on a standardC compiler. We use
standardPOSIX interfaces to build an accurate timer and an
allocator that returns page-aligned arrays. (All of our tests
use page-aligned arrays to eliminate one source of variation
between runs.)

A. Gap Test

We describe the gap test first because it exposes many of
the complications that arise in building micro-benchmarksto
expose memory hierarchy behavior. The gap test is simple and
intuitive. It relies directly on hardware effects caused bythe
combination of capacity and associativity.

The gap test accesses a set ofn locations spaced a uniformk
bytes apart. We call this set areference string. We describe the
reference strings for the gap test with a tupleG(n,k,o) wheren
is the number of locations to access,k is the number of bytes
between those locations, ando is an offset added to the start
of the last location in the set. The reference stringG(n,k,0)
generates the following locations:

s1 s2 s3 . . . sn

0 k 2k (n−1)k

G(n,k,4) would move thenth location out another four bytes.
As its first step, the gap test finds cache capacity and

associativity. It uses the reference strings to conduct a series
of parameter sweeps overn, k, ando, organized as shown in
Figure 1. It measures the time taken to run each reference
string. It conducts a simple analysis on those results. We

describe how to run and time a reference string in subsections
below. The test takes four inputs: a lower bound on cache size,
LB ; an upper bound on cache size,UB ; an upper bound on
associativity,MaxAssoc, and theOS pagesize fromsysconf.

The intuition behind this parameter sweep is simple. Con-
sider a direct-mapped cache. The algorithm first tries the set
of reference strings fromG(2,LB ,0) to G(2,UB,0). When k
reaches theL1 cache size, the two locations in the reference
string will map to the same cache location and each reference
will miss in the L1 cache. That effect raisest abovebase-
line. The code records cache capacity and associativity, and
terminates the loop.

With a set associative cache, the sweep will continue until
n is one greater than the associativity and(n−1) ·k equals the
cache capacity. At that point, the locations in the reference
string all map to the same set and, because there are more
references than ways in the set, the references will begin to
miss. For smaller values ofn, all the references will hit in
cache and the time will match the baseline time.

The second part of the algorithm uses the same effect to
find linesize. It already has values forn and k that match
capacity and associativity. It runs a parameter sweep ono in
the reference stringG(n,k,o), When o, the offset in the last
block, reaches the linesize, the last access in the string maps
into a different set in cache, alln references hit in cache, and
the measured time returns tobaseline.

Of course, both steps assume that we can accurately
measure the running time of the reference string and that
compulsory misses at the start of that run do not matter.

Running a Reference String To measure the running time for
a reference string, the tool must instantiate the string andwalk
its references enough times to obtain an accurate timing. Our
tools build the reference string into an array of pointers that
contains a circular linked list of the locations. (InC, we use
an array ofvoid**.) The code to run the string is simple:

loads← number of accesses
start← timer()

while (loads - -> 0)
p← *p;

finish← timer()
elapsed← finish - start

The implementation unrolls the loop by a factor of ten to make
loop overhead small relative to the memory access costs. The
tool selects a number of accesses that is large enough so that
the fastest test,G(2,LB,0), runs for at least 1,000 timer ticks.

Timing a Reference String The loop that runs the reference
string computes elapsed time using a set of calipers, the calls
to timer, placed immediately outside the minimal timing loop.
In practice, obtaining good times is difficult. Our task is made
more difficult by the desire to run on arbitraryPOSIX systems
in multiuser mode (e.g., not in single-user mode). To obtain
sufficiently accurate timings in this environment, we use a
simple but rigorous discipline.

R R R R R R R
R R R R R R R
R R R R R R R
R R R R R R R
R R R R R R R
R R R R R R R
R R R R R R R
R R R R R R R

�
�
�
�
�
�
�

�

-�1 line

� -1 page

k
rows

?

6

Fig. 2. Cache-Only Reference String

First, we use an accurate timer. It calls thePOSIX

gettimeofday routine and combines the resultingtv_sec
andtv_usec values to produce a double-precision floating-
point value. We scale the number of accesses to the apparent
resolution of this timer, determined experimentally.

Second, we run many trials of each reference string and keep
the minimum measured execution time. We want the shortest
time for a given reference string; outside interference manifests
itself in longer times. To find the shortest time, we run the test
repeatedly until we have not seen the minimum time change
in the lastTrials runs. A typical value forTrials is 100.

Finally, we convert the measured times into cycles. We
carefully measure the time taken by an integer add and
convert the measured time into integer-add equivalent units.
Specifically, we multiply to obtain nanoseconds, divide by the
number of accesses, and round the result to an integral number
of integer-add equivalents. This conversion eliminates the
fractional cycles introduced by amortized compulsory misses
and loop overhead.

Experimental validation on a broad variety of machines
shows that these techniques produce accurate results for the L1
cache characteristics of a broad variety of architectures (See
Section VI). Our other tests use the same basic techniques
with different reference strings.

Reducing the Running Time Figure 1 suggests that the
parameter sweeps sample the space at a fine and uniform
grain. We can radically reduce running time by sampling fewer
points. On most systems, for example, the size of the gap,k,
will be an integral multiple of 1KB. Associativity is unlikely
to be odd. Linesize is likely to be a power of two. The current
implementation usesLB = 1KB, UB = 16MB, and an initial
1 KB increment that increases in steps ask grows.2 It testsn
for the values 2 and odd numbers from 3 to 33. It varieso
over powers of two fromsizeof(void*) to pagesize.

Limitations The gap test only works if it can detect the actual
hardware boundary of the cache. We do not apply the gap test
beyondL1 for several reasons. Higher levels of cache tend to
be shared, either between I-cache and D-cache, or between
cores, or both. Operating systems lock page table entries into
higher-level caches. Higher levels of cache often use physical

2When the test samples the interval from2n to 2
n−1, it uses an increment

of max(1024,2n−2). Thus, forn≥ 12, it tests2n, 2n+1, and three points
between, spaced2n−2 bytes apart. For smallern, it tests at 1KB intervals.

 2
 4
 8

 16
 32
 64

 128

32KB 256KB 2MB 8MB 64MB

La
te

nc
y

(c
yc

le
s)

Data Footprint

Cache-Only
TLB-Test

Fig. 3. Intel E5530 response, log-log plot

rather than virtual addresses. Each of these factors can cause
the gap test to fail. It works onL1 precisely becauseL1 data
caches are core-private and virtually mapped, and page tables
are locked intoL2 or L3 cache.

B. Cache-Only Test

The cache-only test avoids the weaknesses that the gap test
exhibits for upper level caches by solving for cache capacity
in isolation from associativity. It also isolates cache effects
from TLB effects. It reuses the infrastructure from the gap test
to run and time the cache-only reference string.

The cache-only reference string,C(k), minimizes the impact
of TLB misses. The parameterk specifies the reference string’s
memory footprint. The generator also uses theOS pagesize and
an estimate ofL1 linesize. In practice,L1 linesize is used to
accentuate the system response by decreasing spatial locality,
so any value greater thansizeof(void*) works.

Givenk, theL1 linesize, and theOS pagesize, the generator
builds an array of pointers that spansk bytes of memory. The
generator constructs an index set, the column set, that covers
one page and accesses one pointer in each line on the page.
It constructs another index set, the row set, that contains the
starting address of each page in the array. It shuffles both the
column and row sets into random order.

To build the linked list, it iterates over the pages in the
row set. Within a page, it links together the lines in the order
specified by the column set. It links the last access in one
page to the first access in the next page. If pagesize does not
divide k, it generates a partial last row in random order. The
last access then links back to the first, to create the circular
list. Figure 2 shows the cache-only reference string without
randomization; in practice, we randomize the order within each
row and we randomize the order of the the rows.

To measure cache capacity, the test uses this reference string
in a simple parameter sweep:

for k← LB to UB
tk ← time forC(k)

The implementation, of course, is more complex, as described
in Section IV-A. The sweep produces a series of values,tk,
that form a piecewise linear function describing the processor’s
cache response.

The cache only line in Figure 3 shows the results of the
cache-only test on an Intel E5530 Nehalem. Note the sharp
transition for theL1 cache at 32KB and the softer transitions
for L2 and L3 caches. Our analysis reports an effectiveL2
capacity of 224KB from this dataset. (See Table I.)

-
-

-
-

-
-

-

�
-�1 line

� -1 page

k
rows

?

6

Fig. 4. TLB-Test Reference String

As long as pagesize is large relative to linesize,C(k)
produces clean results that isolate the cache behavior. To draw
consistent conclusions from the data, however, requires the
analytical techniques explained in Section V.

C. TLB Test

The TLB test uses a reference string that isolatesTLB be-
havior from cache misses and runs it in the same infrastructure
from the earlier tests. It produces a piecewise linear function
that describes the processor’sTLB response. Again, the data
must be subjected to further analysis.

TheTLB reference string,T(n,k), accessesn pointers in each
page of an array ofk bytes. To constructT(1,k), the generator
builds a column index set and a row index set as in the cache
only test. It shuffles both sets. To generate the permutation, it
iterates over the row set choosing pages. It chooses a single
line within the page by using successive lines from the column
set, wrapping around in a modular fashion if necessary. The
result is a string that accesses one line per page, and spreads
the lines over the associative sets in the lower level caches.
Figure 4 showsT(1,k · pagesize), without randomization.

For n>1, the generator usesn lines per page, with a
variable offset within the page to distribute the accesses
across different sets in the caches and minimize associativity
conflicts. The generator randomizes the full set of references,
both to avoid the effects of a prefetcher and to avoid successive
accesses to the same page.

The TLB-Test line in Figure 3 showsTLB test results for
an Intel Nehalem E5530 processor. For theTLB data, the x-
axis represents total footprint covered by theTLB, or pages ×
pagesize. Notice the sharp transitions at 256KB and 2MB.

Eliminating False Positives The cache-only test hides the
impact of TLB misses by amortizing those misses over many
accesses. Unfortunately, theTLB test cannot completely hide
the impact of cache because any action that amortizes cache
misses also partially amortizesTLB misses. To see this,
consider the log-log plot in Figure 5 which depicts the set of
feasible memory-footprints that we can test. The x-axis shows
the number of lines in a given footprint, while the y-axis shows
the number of pages. Labeled dotted lines show boundaries of
cache andTLB levels.

Consider the footprint of the cache-only string,C(k), as k
runs from one to large.C(1) generates the footprint (1,1) in
the plot. C(2) generates (1,2), and so on. Whenk reaches

Lines

P
ag

es

P
ag

es

1 L1 L2 L3

1

TLB1

TLB2

T(1,k)
T(2,k)
C(k)

Fig. 5. Memory Hierarchy Search Space

pagesize÷ linesize, it jumps from one page to two pages.C(k)
forms a step function that degenerates to a line due to the log-
log form of the plot. In contrast, theTLB string,T(1,k), has a
footprint that rises diagonally, at one page per line.

The plot predicts points where performance might change.
When the line for a given reference string crosses a cache
or TLB boundary in the memory hierarchy, performance may
jump. With C(k), we see a jump when it crosses cache
boundaries but not when it crossesTLB boundaries—precisely
because the order of access amortizes theTLB misses. Of
course, if the hardware responds with a rise in access time
before the actual boundary, the test shows that point as the
effective boundary.

When theTLB line crosses a cache boundary, the rise in
measured time is indistinguishable from the response to aTLB.
The plot, however, gives us an insight that allows us to rule
out false positive results. The line forT(2,k) parallels the line
for T(1,k), but is shifted to the right. IfT(1,k) shows aTLB

response atx pages, theT(2,k) shows aTLB response atx
pages. BecauseT(2,k) uses twice as many lines atx pages as
T(1,k), a false positive response caused by the cache inT(1,k)
will appear at a smaller size inT(2,k).

To detect false positives, theTLB test runs both theT(1,k)
and T(2,k) strings. It analyzes both sets of results, which
produces two lists of suspect points in ascending order by
k. If T(1,k) shows a rise atx pages, butT(2,k) does not, then
x is a false positive. If bothT(1,k) andT(2,k) show a rise atx
pages, we report the transition as aTLB size. This technique
eliminates most false positive results.

Still, a worst-case choice of cache andTLB sizes can fool
this test. If T(1,k) maps intom cache lines atx pages, and
T(2,k) maps into2·m cache lines atx pages, and the processor
has caches withm and 2·m lines, both reference strings will
discover a suspect point atx pages and the current analysis
will report a TLB boundary atx pages. Using more tests,
e.g., T(3,k), T(4,k), and T(5,k), could eliminate these points.
In practice, we have not encountered this problem.

D. Linesize

The linesize test operates on a different paradigm than the
cache-only test and theTLB test. It cannot rely on effects from
associativity, as did the gap test, for two reasons. First, as
the response curves from the cache-only test show, the micro-
benchmark may not be able to use the full cache; using a
smaller footprint will fail to trigger the predictable associa-
tivity effects. Second, higher level caches may be physically

Fig. 6. Linesize micro-benchmark access pattern

mapped, which also disrupts the associativity behavior. Thus,
the linesize test relies on spatial locality and conflict misses.

The test generates a reference stringL(n,s), wheren is the
measured cache capacity ands is the stripe, or linesize, to test.
For each cache level of sizen the test performs a parameter
sweep overL(n,s) for sizeof(void*)≤ s ≤ pagesize÷ 2. To
save time we limits to values that are powers of two, but the
test works for anys within the given bounds.

L(n,s) generates two complementary striped access patterns,
A and B, depicted in Figure 6. Pattern A accesses the first
location in each of the even numbered stripes while pattern
B accesses the first location in each of the odd numbered
stripes. The value ofs determines the width of each stripe.
Both patterns are constructed to span the entire measured
cache capacity, so the combined span is twice the measured
cache capacity. But, because each pattern only accesses half
of the stripes, the total data footprint is no larger than the
cache capacity. The test accesses every location in pattern
A followed by every location in B, repeating until sufficient
timing granularity has elapsed. The accesses within each
pattern are shuffled to defeat a prefetcher.

When patterns A and B both map to the same cache lines,
they conflict. Fors< linesize, each access generates a miss
because both A and B access every line. Since the combined
patterns span twice the measured cache capacity, the test
accesses twice the number of lines in the cache. Onces reaches
an integral multiple of the linesize, patterns A and B no longer
conflict. Intuitively, each pattern has empty “holes” into which
the other pattern fits. The test starts with a small value ofs
and increases it until A and B do not conflict, at which point
the time to run the reference string drops dramatically.

Consider the one-word stripe at the top of Figure 6. Since
the linesize in this example is four words, A and B conflict.
The test uses the latency measured with the one-word stripe
as its baseline. Withs = 2, A and B still conflict, but spatial
locality decreases and run time increases. Withs = 4, A and B
map to different lines, so conflict misses disappear completely
and the time to run the reference string drops dramatically.

The analysis portion of this test is straightforward. Measured
latency increases relative to the baseline ass increases due to
the decrease in spatial locality. As soon as the stripe width
is large enough to prevent conflict misses, measured latency

drops below the baseline. The effective linesize, then, is equal
to thes for which the latency ofL(n,s) is less than the latency
of the baseline,L(n,sizeof(void*)). Of course, a system with
linesize equal to wordsize would produce the same response
for all values ofs. We have not encountered such a system.

For the linesize test to function properly both patterns A and
B must map to the same cache lines. On a virtually mapped
cache we can just create two adjacent arrays for A and B,
both of lengthn. However, physically mapped caches do not
guarantee that the arrays map contiguously into the cache.
Our key insight is that physically mapped caches provide
contiguous mappingwithin each page.

To leverage this observation, the test generate the access
patterns at apagesize granularity. It allocates2*n/pagesize
pages and randomly fills half of them with pattern A and half
with pattern B. Because the reference string spans twice as
many pages as should fit in cache, on average2*A pages will
map to each cache set, whereA is the cache associativity.

Two competing pages can occupy the cache simultaneously
if and only if: (1) one page contains pattern A and other
page contains pattern B and (2) the stripe width is an integral
multiple of the effective linesize. Otherwise, the two pages
conflict with each another. (Note that it suffices to have some,
but not all, pages meet condition (1), because avoiding some
conflict misses will decrease the time below the baseline time.)

We cannot, in a portable way, control the page mapping. We
can, however, draw random samples from a large set of pages
and mappings to look for these conditions. The methodology
that we developed to run a reference string achieves this effect.
If s< linesize, then condition (2) never holds and the measured
latency remains high. Fors= linesize (or an integral multiple
of linesize), condition (2) always holds and condition (1) holds
in some random samples. If the value ofTrials is large enough,
say 100, the test will find the desired mapping in some of its
samples, which will produce the predicted decrease in runtime.
In effect, our timing methodology samples over many possible
virtual to physical mappings. Because it keeps the minimum
time, it finds large enough effects for the analysis to recognize
the linesize effect.

E. Associativity

Following X-RAY , our gap test detects associativity in the
L1 cache, provided that it is virtually mapped [11]. The X-
RAY paper suggests the use of superpages to test associativity
in higher cache levels. Because superpage support is not yet
portable, we did not follow that path.

With effective sizes smaller than hardware limits and physi-
cal address mappings, it is not clear that the compiler can rely
on associativity effects in caches at theL2 and higher level.
Thus, we do not measure associativity for caches aboveL1.

We have developed a straightforward test forTLB associa-
tivity based on the gap test. It functions well in most cases,but
an architect can fool it. TheARM 926EJ-Shas a two-partTLB

with an 8-page, fully-associativeTLB and a 56-page, 2-way set
associativeTLB. A TLB lookup first consults the smallTLB; a
miss in the smallTLB faults to the largerTLB. The TLB test

finds both the 8-page and the 56-pageTLB. The associativity
test reports that bothTLBs are 8-way set associative; we have
not been able to devise a reference string that exposes the
2-way associativity in the largerTLB.3

V. AUTOMATIC ANALYSIS

The cache-only andTLB only micro-benchmarks produce
piecewise linear functions that describe the processor’s re-
sponse, as shown in Figure 3. The tools use a multi-step
analysis to derive consistent and accurate capacities fromthat
data. The analysis derives two key pieces of information from
a dataset: (1) the number of levels of cache orTLB and (2) the
transition point between each level (i.e., the capacity of each
level). The discussion uses data from the cache-only test inits
examples. The same analysis is used on theTLB test data.

The analysis isautomatic; it needs no human intervention.
Manual interpretation of the data is complex and subjective.
The analysis uses mathematical optimization to find answers.

The analysis isconservative. In the presence of ambiguous
results, it favors an underestimate rather than an overestimate,
which might cause over-utilization of the cache.

The analysis isrobust. Each step in the analysis has clear
justification. It avoids arbitrary thresholds. Although wecannot
prove that it draws perfect conclusions in the presence of noisy
data, our thorough testing and analytical justifications increase
our confidence that it will at least produce reasonable answers.
It holds up experimentally (see§VI).

The following sections describe the three steps of our
analysis: (1) filtering noise, (2) determining the number of
levels and (3) determining the capacity of each level.

A. Filtering Timing Noise

Timing error is a major obstacle to correctly interpreting
the micro-benchmark results. We cannot request single-user
or real-time execution in a portable way; thus, the timing
results are likely to reflect transient events of theOS or daemon
processes. Our tools use a two pronged approach to minimize
timing error: we reduce such errors during collection and we
filter the data after collection to remove any remaining noise.

Our timing methodology, introduced in Section IV-A, pro-
vides the first-line defense against timing error. The tests
perform multiple trials for each value in the parameter sweep,
but only keep the smallest time. To prevent transient system
events from affecting multiple trials of the same parameter
value, we sweep across the entire parameter space before
repeating for the next trial. Thus, any anomaly is spread across
one trial at several parameter values rather than multiple trials
at the same value. The test tries each parameter value until
it finds Trials consecutive attempts with no decrease in the
minimum value for that point; typically,Trials= 100. This
adaptive approach collects more samples when the timing

3The fact that we cannot, in portableC code, discover the associativity
suggests that the architects made a good decision. They useda smaller and
presumably cheaper associativity precisely in a place where the compiler could
neither see nor use the larger associativity.

results are unstable and fewer samples when the results are
consistent. It always collects at leastTrials samples per point.

The first step in analysis filters the data to remove noise. Our
filtering scheme leverages two observations. First, we assume
that cache latency is an integral number of cycles, so we divide
the empirical latency by the measured latency of an integer
add and round to the nearest integer. For the sizes that fit in a
cache, all accesses should be hits and should, therefore, take an
integral number of cycles. For sizes that include some misses,
the total latency is a mix of hits and misses. Rounding to cycles
in these transitional regions produces a slight inaccuracy, but
one that has minimal impact. As the data approaches the next
cache boundary, all the references are misses in the lower level
cache and the latency is, once again, accurate.

Second, we assume that the empirical results approximate an
isotonic, or non-decreasing latency curve. We don’t expect the
latency to decrease when data footprint increases. Sometimes,
the empirical results contain non-isotonic data points. Wecor-
rect these anomalies withisotone regression, which removes
decreasing regions from a curve with a form of weighted
averaging. We use the Pool Adjacent Violators Algorithm [12].

B. Determining the Number of Cache Levels

Next, the analysis determines the number of levels in the
cache hierarchy. Because this step only determines the rough
global structure of the curve, it can use aggressive smoothing
techniques, as long as they preserve the curve’s important
features. The third step, finding transition points, cannotuse
such aggressive smoothing as it may blur the transitions.

First, the analysis smoothes the curve with a Gaussian filter.
The filter eliminates noise while preserving the curve’s global
shape. It uses a filter window whose width is derived from the
minimum distance that we expect between two cache levels.
We assume that each cache level should be at least twice as
large as the previous level; on alog2 scale the appropriate
window width is log2(2) = 1. With this window, the filter
aggressively smoothes out noise between cache levels. It
cannot filter out an actual level unless it is less than twice the
size of the previous level. The smoothed curve in the rightmost
graph in Figure 7 shows the results of a Gaussian filter applied
to the cache-only data points in Figure 3.

Next, the analysis identifies regions in the curve that corre-
spond to levels in the cache. Informally, we expect to find
relatively flat regions of the curve that are surrounded by
sloped regions. To detect such regions, the analysis computes
a one-dimensional density estimate along the y-axis, usinga
fine-grained histogram. It splits the y-axis into a large number
of adjacent bins and computes the number of points that fall
in the y-range of each bin. Intuitively, the bins for flat regions
have much larger counts than bins for sloped regions. Thus, a
cache levels is marked by a region of high density surrounded
by regions of low density.

The fine-grained histogram, shown rotated sideways in Fig-
ure 7, provides a rough indication of the desired information.
Further smoothing with a Gaussian filter clarifies the region
structure. The analysis derives the filter window width from

 4

 8

 16

 32

 64

 128

 0 0.015 0.03 0.045

La
te

nc
y

(c
yc

le
s)

Frequency

Smoothed
Histogram

 0 0.1 0.2 0.3 0.4 0.5

Frequency

Fine-Grained
Histogram

4KB 32KB 256KB 2MB 16MB

Data Footprint Size

Cache-Only Results

Original
Smoothed

Fig. 7. Histogram Analysis for Intel Xeon E5530 Nehalem, Cache-Only Reference Stream

the minimum expected magnitude of a transition between
regions—that is, the minimum relative cost of a cache miss.
We assume that a cache miss incurs at least a 25% performance
penalty; this step of the analysis considers anything less to be
insignificant. That assumption implies that the window width,
on a log2 scale, should belog2(1.25) ≈ 0.322.

With this filter window width, the Gaussian filter consol-
idates the adjacent bins and produces a smooth curve with
clear maxima and minima. The leftmost graph in Figure 7
depicts the smoothed histogram. The final step counts the
number of local maxima in the curve by computing the
slope of the smoothed histogram. Local maxima correspond to
points where the first derivative changes from non-negativeto
negative. This simple algorithm detects the peaks in the his-
togram, indicated by the circles on the peaks of the smoothed
histogram. Each peak corresponds to a distinct level in the
memory hierarchy. If the analysis findsn peaks, that indicates
n− 1 levels of cache, plus main memory. This step concludes
by returning the number of levels in the cache.

C. Determining the Size of the Cache Levels

The final analysis step finds the transition points between
levels in the curve—the points where latency begins to rise
because the cache is effectively full. This section presents an
intuitive algorithm to find objectively the optimal points to
split the curve, given the number of levels in the cache.

Interpreting the cache-latency curve is somewhat subjective,
as it entails a judgment call with regard to the capacity/latency
tradeoff. The ideal curve would resemble a step function, with
long, flat regions connected by short steep transitions. On such
a curve, cache capacity is easily determined as the final point
before the rise in latency. However, modern processors show
soft response curves that rise well before the hardware cache
boundary, at least on the higher levels of cache. Some previous
approaches try to estimate hardware cache capacity from the
shape of the latency curve. In contrast, our analysis finds
a number that makes sense for compiler-based blocking of
memory accesses. That number, theeffective cache capacity,
corresponds to the point at which access latency starts to rise.

The analysis identifies the largest point in a flat region of the
curve. Unfortunately, “flat” is subjective if the transition begins
with a gradual slope. Thus, the analysis uses an objective

function that selects for points that occur early in the transition.
It models a step-function that steps upward at the transition
point between two levels. The number of steps should match
the number of levels found by the second step in the analysis.
Thus, the analysis tries to minimize error between a step-
function approximation and the original (unsmoothed) data.

The analysis employs a dynamic programming algorithm,
based on extending Perez’s polygonal approximation algo-
rithm [13] to a step-function approximation. While the com-
plexity of this algorithm isΘ(MN3), whereM is the number
of levels cache andN is the number of data points, the running
time is not a practical problem. The values forM andN are
small and the total cost of analysis is insignificant relative to
the cost of gathering the data.

Figure 8 shows the result of the step-function approximation
on the original data. Smoothing would alter the transition
points. The first three steps represent theL1, L2, andL3 caches.
The right endpoint of a step indicates that level’s capacity. The
height of a step indicates its worst-case latency. Althoughthe
L2 andL3 transitions are gradual in the data, the approximation
conservatively identifies the start of the slope as the effective
cache size. A more gentle slope might cause the algorithm to
select a larger effective size with a slightly longer latency.
The transition points are chosen to minimize the error of
the step-function approximation. The rightmost step in the
approximation corresponds to main memory and indicates the
miss penalty for theL3 cache.

VI. EXPERIMENTAL VALIDATION

To validate our techniques, we run them on a collection of
systems that range from commodityX86 processors through

 2
 4
 8

 16
 32
 64

 128

32KB 256KB 8MB

La
te

nc
y

(c
yc

le
s)

Data Footprint Size

Original
Approximation

Fig. 8. Step-Function Approximation for Intel Xeon E5530 Nehalem

Processor Linesize in Bytes Associativity Capacity in KB Latency in Cycles
Actual Measured Actual Measured Actual Measured Measured

AMD Opteron 2360 SE Barcelona
1 64 64 2 2 64 64 3
2 64 64 16 512 448 12
3 64 64 32 2048 1792 46

AMD Opteron 275 1 64 64 2 2 64 64 3
2 64 64 16 1024 896 17

AMD Opteron 6168 Magny-Cours
1 64 64 2 2 64 64 3
2 64 64 512 512 13
3 64 64 12288 5120 32

AMD Phenom 9750 Agena
1 64 64 2 2 64 64 3
2 64 64 16 512 448 12
3 64 64 32 2048 2048 31

ARM926EJ-S 1 32 32 4 4 16 16 2
2 32 32 ? 256 224 15

IBM Cell (PS3) 1 128 128 ? 4 32 32 2
2 128 128 ? 512 320 20

IBM POWER7

1 128 128 8 8 32 32 1
2 128 128 8 256 256 6
3 128 256 ? 32768 3072 15
4 256 20480 51

Intel Core 2 Duo T5600 Merom 1 64 64 8 8 32 32 3
2 64 128 8 2048 1280 14

Intel Itanium 2 900 McKinley
1 64 64 4 4 16 16 2
2 128 128 256 256 6
3 128 128 1536 1024 18

Intel Itanium 2 9040 Montecito
1 64 64 4 4 16 16 2
2 128 128 8 256 256 6
3 128 128 12 12288 4096 11

Intel Pentium 4
1 64 64 4 4 8 8 4
2 64 128 512 256 36

Intel Xeon E5420 Harpertown
1 64 64 8 8 32 32 3
2 64 128 24 6144 4096 15

Intel Xeon E5440 Harpertown
1 64 64 8 8 32 32 3
2 64 64 24 6144 4096 15

Intel Xeon E5530 Nehalem
1 64 64 8 8 32 32 4
2 64 64 8 256 224 10
3 64 64 16 8192 5120 19

Intel Xeon E7330 Tigerton
1 64 64 8 8 32 32 3
2 64 128 12 3072 1792 14

Intel Xeon X3220 Kentsfield
1 64 64 8 8 32 32 3
2 64 64 4096 2560 15

Intel Xeon X5660 Westmere
1 64 64 8 8 32 32 4
2 64 64 8 256 224 10
3 64 64 16 12288 8192 22

PowerPC 7455 G4
1 32 32 8 8 32 32 3
2 64 64 8 256 224 10
3 128 128 8 2048 1536 32

PowerPC 750 G3 1 32 32 8 8 32 32 2
2 128 128 2 1024 512 20

Sun UltraSPARC T1 1 16 16 4 4 8 8 4
2 64 64 12 3072 3072 23

TABLE I
CACHE RESULTS

an IBM POWER7, an ARM, and theIBM Cell processor in a
Sony Playstation 3. All of these systems run some flavor of
Unix and support enough of the POSIX interface for our tools.

Table I shows the measured cache parameters: linesize,
associativity, capacity, and latency for each level of cache that
the tools detect. TheMeasured column shows the numbers
produced by the tools. Capacities were produced by the cache-
only test; the gap test agrees with it on each system we have
tested. A blank in theMeasured column means that the tools

do not measure that value (e.g.,L2 cache associativity). The
Actual column lists the documented number for that processor,
if available. Table II shows the capacity numbers forTLBs on
the same systems. We do not show pagesize numbers in the
table; they are available from the POSIX sysconf call.

The tables are produced by a script that distributes the code,
usesmake to compile and execute it, and retrieves the results.
Two of the systems use batch queues; those systems require
manual intervention to schedule the job and retrieve the results.

Processor Capacity in KB
Actual Measured

AMD Opteron 2360 SE Barcelona 1 192 192
2 2048 2048

AMD Opteron 275 1 128 128
2 2048 2048

AMD Opteron 6168 Magny-Cours 1 192 192
2 2048 2048

AMD Phenom 9750 Agena 1 192 192
2 2048 2048

ARM926EJ-S 1 256 32
2 224

IBM Cell (PS3) 1 ? 256
2 ? 4096

IBM POWER7 1 4096 4096
2 ? 32768

Intel Core 2 Duo T5600 Merom 1 64 64
2 1024 1024

Intel Itanium 2 900 McKinley 1 2048 7680
2 8192

Intel Itanium 2 9040 Montecito 1 512 1920
2 2048

Intel Pentium 4 1 256 256

Intel Xeon E5420 Harpertown
1 64 64
2 1024 1024

Intel Xeon E5440 Harpertown
1 64 64
2 1024 1024

Intel Xeon E5530 Nehalem
1 256 256
2 2048 2048

Intel Xeon E7330 Tigerton
1 64 64
2 1024 1024

Intel Xeon X3220 Kentsfield
1 64 64
2 1024 1024

Intel Xeon X5660 Westmere
1 256 256
2 2048 2048

PowerPC 7455 G4
1 512 512
2 1280

PowerPC 750 G3
1 512 512
2 1280

Sun UltraSPARC T1 1 512 3840

TABLE II
TLB RESULTS

A couple of entries deserve specific attention. ThePOWER7
has an unusualL3 cache structure. Eight cores share a 32MB

L3 cache; each core has a 4MB portion of that cache that it can
access faster than the remaining 28MB. The cache-only test
discovers two distinct latencies: a 3MB cache with a 15 cycle
latency and a larger 20MB cache with a 51 cycle latency. Our
tests were run on an active system; the effective sizes reflect
the actual behavior that a program might see. A compiler that
blocks for POWER7caches would do better to use the tool’s
description than to treat it as a unified 32MB L3 cache.

As discussed in§ IV-E, the TLB on the ARM 926EJ-S
generates a result that differs from the hardware description.
Again, a compiler would do well to use the tools’ result rather
than the description from the manuals.

Several of our systems have cache designs that use different
linesizes for different levels of cache. The Itanium, POWERPC
G3, and Sun T1 all use a smaller linesize forL1 and a larger
linesize for higher levels of the cache. The POWERPC G4
has a different linesize for each level of cache. The linesize
test detects the correct linesize in each case. On thePOWER7,

Intel T5600, Pentium 4, Intel E540, and the Intel E7330, the
tools detect a largereffective linesize for the last level of
cache. While it is possible that the documentation is incorrect,
it seems more likely that the test exposes behavior of the
hardware prefetcher or the memory controller. Again, these
examples reinforce the need to determine such parameters
experimentally rather than rely on documentation.

Effective Cache Sizes The tests measure effective cache size
rather than the actual cache size. The discovered effectivesize
is typically smaller than actual size. ForL2 cache and beyond,
effective size can be as small as 50–75% of actual size. For
L1 caches, effective size matched actual size on each system.

VII. C ONCLUSION

This paper presents techniques to measure the effective
sizes of levels in a processor’s cache andTLB hierarchy.
The tools are portable; they rely on aC compiler and the
POSIX OS interfaces. The tools discover effective cache and
TLB sizes that are suitable for use in memory-hierarchy
optimizations; in fact, these effective numbers should provide
better optimization results than would be obtained using the
actual hardware values from the manufacturer’s manual. The
tools will be available in open source form (beforeISPASS).

We are pursuing two extensions of this work. The first
will use the micro-benchmarks described in this paper to
measure effective capacity when other cores are loaded. The
experiments will run a known memory load on all but one
core, while measuring cache size on the final core. The
second project will explore in more detail the reasons for the
discrepancy between effective and physical cache sizes.

VIII. A CKNOWLEDGMENTS

This work was performed as part of the PACE Project,
a DARPA-sponsored project funded through AFRL Con-
tract FA8650-09-C-7915. Thomas Barr, Tim Harvey, Arnold
Schwaighofer, Ray Simar, and Linda Torczon all contributed
to this work, as did researchers in the other DARPA AACE

projects. All of these people provided constructive criticism,
deep technical discussions, and encouragement. We owe them
all a debt of thanks.

REFERENCES

[1] C.-K. Luk and T. C. Mowry, “Architectural and compiler support for
effective instruction prefetching: a cooperative approach,” ACM Trans.
Comput. Syst., vol. 19, no. 1, pp. 71–109, 2001.

[2] S. A. Moyer, “Performance of the IPSC/860 Node Architecture,” Uni-
versity of Virginia, Charlottesville, VA, USA, Tech. Rep.,1991.

[3] A. Qasem and K. Kennedy, “Profitable loop fusion and tiling using
model-driven empirical search,” inICS ’06: Proceedings of the 20th
annual international conference on Supercomputing. New York, NY,
USA: ACM, 2006, pp. 249–258.

[4] J. Dongarra, S. Moore, P. Mucci, K. Seymour, and H. You, “Accurate
cache and tlb characterization using hardware counters,” in Proceedings
of the International Conference on Computational Science (ICCS), 2004,
pp. 432–439.

[5] A. X. Duchateau, A. Sidelnik, M. J. Garzarán, and D. Padua, “P-ray: A
software suite for multi-core architecture characterization,” Languages
and Compilers for Parallel Computing: 21th International Workshop,
LCPC 2008, Edmonton, Canada, July 31 - August 2, 2008, Revised
Selected Papers, pp. 187–201, 2008.

[6] J. González-Domı́nguez, G. L. Taboada, B. B. Fraguela,M. J. Martı́n,
and J. Touriño, “Servet: A benchmark suite for autotuning on multicore
clusters,” in24th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’10), Atlanta, GA, USA, April 2010.

[7] L. McVoy and C. Staelin, “lmbench: Portable tools for performance anal-
ysis,” in Proceedings of the USENIX 1996 Annual Technical Conference,
San Diego, California, January 1996.

[8] R. H. Saavedra and A. J. Smith, “Measuring cache and tlb performance
and their effect on benchmark runtimes,”IEEE Trans. Comput., vol. 44,
no. 10, pp. 1223–1235, 1995.

[9] K. Yotov, K. Pingali, and P. Stodghill, “X-ray: A tool forautomatic
measurement of hardware parameters,” inQEST ’05: Proceedings of
the Second International Conference on the Quantitative Evaluation of
Systems, Washington, DC, USA, 2005, p. 168.

[10] “Omitted for blind review,” Reference will appear in full paper.
[11] K. Yotov, K. Pingali, and P. Stodghill, “Automatic measurement of mem-

ory hierarchy parameters,”SIGMETRICS Perform. Eval. Rev., vol. 33,
no. 1, pp. 181–192, 2005.

[12] T. Robertson, F. Wright, and R. Dykstra,Order Restricted Statistical
Inference. John Wiley @ Sons Ltd., 1988.

[13] J.-C. Perez and E. Vidal, “Optimum polygonal approximation of digi-
tized curves,”Pattern Recogn. Lett., vol. 15, no. 8, pp. 743–750, 1994.

